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ABSTRACT

The effectiveness of several iterative techniques for solv-
ing matrix equations resulting from finite difference approxima-
tions to self-adjoint parabolic and elliptic partial differential
equations is reviewed. The techniques are:

1. SIP- Strongly Implicit Procedure
2. ICCG- Incomplete Cholesky Conjugate Gradient Method
3. VICCG- Vectorized ICCG
4. MICCG- Modified ICCG
5. DSCG- Diagonally Scaled Conjugate Gradient Method
6. POLCG- Polynomial Preconditioned Conjugate Gradient

Method.
7. PICCG- Polynomial form of ICCG

The comparison is made on a vector machine (two-pipe Cyber
205) where vectorization of the code is done primarily by the
vector compiler available. It is found that of the methods
studied, POLCG and MICCG appear to require the least amount of
CPU time. An advantage of MICCG over POLCG is that it is less
sensitive to increasing matrix size. Its disadvantages are that
it requires an iteration parameter, has a greater set-up time,
and needs more storage than POLCG.
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1. Introduction

In the numerical solution of two and three dimensional

partial differential equations one is often led to a system of

linear equations (or a matrix equation) which must be solved.

Efficient performance of this task by the researcher has become

complicated with the advent of vector and parallel processing

machines. Depending upon the algorithm, machine, and problem

to be solved, an "optimum" strategy taken by the researcher

should take into consideration properties of various algorithms

such as their vectorizability and parallelizability.

The present work is an effort to study the efficiency of

several iterative methods used in the solution of symmetric

banded systems of linear equations. They are: Stone's[l] Strong-

ly Implicit Procedure(SIP); the Incomplete Cholesky Conjugate

Gradient Method (ICCG) of Meijerink and van der Vorst[2], includ-

ing its vectorized variant (VICCG(O))[3], and Gustafsson's[4]

modified form (MICCG); a diagonally scaled conjugate gradient

method (DSCG); Saad's[5] polynomial preconditioned conjugate

gradient method (POLCG); and finally a polynomial variation of

ICCG (PICCG). The machine on which comparisons are made is a

Cyber 205 which has a peak operating performance of 100 mega-

flops for vector addition and/or multiplication (200 megaflops

for linked triadic vector operations).

New algorithms are not introduced (although some modifica-

tions to existing methods are tried). The purpose of this effort

is to take a series of known methods, apply them to problems with
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similar characteristics to what might be found in real physical

settings (including three dimensional problems of groundwater

modelling), and determine which method(s) reviewed have superior

performance on a Cyber 205.

Little has been written in the water resource journals on

many of the now available vectorizable iterative techniques for

solving large sparse matrices. Trescott and Larson[10] studied

the convergence properties of SIP in comparison to ADI(Alternat-

ing Direction Implicit) and LSOR(Line Successive Overrelaxation).

In 1981 Kuiper[ll] compared SIP to ICCG concluding that for con-

fined aquifer problems ICCG appeared to be superior while for

water table conditions(nonlinear) the methods performed compar-

ably well. More recently Kuiper(12] compared a number of iterative

techniques on a set of linear and nonlinear groundwater problems.

The conclusion of his most recent study was that the Picard-

preconditioned conjugate gradient methods performed best for

both the linear and nonlinear problems. Each of these papers are

concerned with performance on scalar machines.

In the open literature there are several comparisons of

iterative methods which take into account vectorizability of

particular algorithms, and their efficiency on given "supercom-

puters". A few of the more pertinent references are given below.

Meurant[6] and Jordan[7] have compared VICCG, POLCG, and

block preconditioned conjugate gradient methods for two dimens-

ional problems. Meurant's study concluded that for "small" prob-

lems (grids of 60x60) POLCG seemed optimal on the 2-pipe Cyber
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205 while for larger problems the block preconditioning methods

appeared to do better. Jordan preferred polynomial precondition-

ers from the standpoint of parallel processing.

Hayami and Harada[8] have recently estimated that on the NEC

SX-2 supercomputer (assuming an acceleration due to vector pro-

cessing of 40 times the scalar rate) DSCG will run ten times

faster than ICCG for most problems. As the Cyber 205 is also a

highly vectorizable machine DSCG has been included as one of the

algorithms to be tested.

Gustafsson[4] considered a class of first order methods

(SSOR and MICCG(n)) which were shown to have markedly better

convergence properties than ICCG. Extending Gustafsson's MICCG,

Ashcroft and Grimes[9] applied the algorithm to three dimensional

problems and in particular programmed it in such a way that (at

least on a Cray machine) much of the code can be made to run con-

currently. Their analysis compares MICCG, SSOR, DSCG and Nofill

Red/black Incomplete factorization preconditioners concluding

that the "concurrent" MICCG method, while not as vectorizable as

some of the other methods, is superior due to its relatively low

iteration count.

The present work differs from that previously reported in

the following respects. The machine used is exclusively a two-

pipe Cyber 205, both two and three dimensional problems are run,

two of the five test problems have anisotropic conditions, and

finally, the set of iterative techniques tested is larger than

previously reported.
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The matrix equations used in the present comparison arise

from finite difference approximations to the 2D and 3D partial

differential equations governing the flow of groundwater in con-

fined aquifers. These equations involve self adjoint parabolic

(or elliptic for the case of steady state flow) differential

operators for which all of the iterative schemes tested are ap-

plicable. Equations of a similar type result in various transport

phenomenon such as heat conduction and laser fusion.

The paper is outlined as follows. In section 2, the five

model problems are described. This is followed in section 3 by a

short explanation of the algorithms. Section 4 concludes with

comparitive results of each on the set of test problems.
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2. Formulation of the Problems

The derivation of the three dimensional partial differential

equation governing the distribution of hydraulic head in a con-

fined aquifer can be found in Reddell and Sunada[13). Assuming

components of the transmissivity tensor lie along coordinate axes

the equation can be concisely written as:

(1) Sht = (KXhx)x +(KYhy)y +(KZhz)z + R

where h is the pressure head to be determined; S is the storage

coefficient of the porous media; Kx, KY, and Kz are transmis-

sivities of the aquifer in the x,y, and z directions; and R is

the volumetric flux of recharge or withdrawal per unit volume of

water from the aquifer. Sources and sinks are approximated by

delta functions with strengths equal their volumetric flux.

The primary boundary conditions are Dirichlet and homogen-

eous Neumann, which correspond physically to constant head and

no-flux boundaries respectively.

In each of the test problems, the aquifer is contained in

a rectangular solid whose faces are assigned appropriate bound-

ary conditions. For aquifers of a more general shape, points

exterior to the aquifer boundaries are assigned zero trans-

missivities for the purpose of eliminating their role in the

determination of head values interior to the aquifer (see for

example [14]). This is done in problem five where an "L" shaped

region is considered.

In the first four problems, a steady state solution is
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sought. Of these the fourth has a nonunique solution since all

of its boundary conditions are homogeneous Neumann. The initial

guess for h in each of the first four problems is zero except

at points where sources/sinks are present or non-homogeneous

Dirichlet boundary conditions apply. The fifth test problem

considers a fully time dependent problem, but solves for only

one time step, given values of the head everywhere for the

immediately preceding time level:

(2) h(x,y,z)=102(x-y+l).

problem 1:

The first problem models an isotropic homogeneous aquifer

with constant head boundaries. No sources or sinks are present.

The transmissivities and boundary conditions are:

Kx=KY=KZ=I.0 and

(3)
h=l on all boundaries.

problem 2:

The second test problem examines the effect of using trans-

missivities with linear gradients along each of the coordinate

axes. As before, no sources or sinks are present. Specification

of case two is as follows:

Kx=l-16y/17

Ky=(16x+l)/17

KZ= (96z+l)/10
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hn=O at x=O and z=l
(4)

hn=l at x=1

h=10 at y=O, and

h=1 at y=l,z=O.

problem 3:

Refer to figure 1 in the description of the third test prob-

lem. There are four subsections of the aquifer which are isotrop-

ic and homogeneous, but whose transmissivities lie in the range

zero to forty. A feature of this problem which makes it difficult

is that one of the subsections is an impermeable layer with a

relatively small transmitting aperture. A source of strength 1.0

is positioned at (.875,.9375,.1875), and a sink of strength .25

is located at (.4375,.625,.5). Specification of case three is:

Kx=KY=KZ=I.0 in region A

Kx=KY=Kz=0.0 in B

Kx=KY=KZ=20.0 in C

Kx=KY=KZ=40.0 in D
(5)

hn=0.0 at y=O,z=l

hn=-l.O at x=l

h=l at y=1, z=O, and

h=5 at x=O.

The center point of the impermeable shell (region B) is at

(.5,.4375,.5) with side length .75 and width .125. The center-

point for region C is the same as for B but has a side length

of .375. The center for region D is (.5,.9,.5) with side length

.125, and finally the aperture is centered at (.75,.5,.5) with

9



side length in the y and z directions of .25, and width .125.

problem 4:

Test case four is a two e.mensional example taken from

Stones's paper[l]. Two dimensional problems are solved by the

three dimensional code by keeping boundary conditions and trans-

missivities independent of the z coordinate. See figure 2 for an

illustration of the domain modelled. Specifications are:

KZ=l everywhere

Kx=KY=l in region A
(6) KX=I, KY=I00 in B

KX=100, KY=l in C

KX=KY=KZ=0 in D, and

hn=o on all boundaries.

Line sources for problem four were located at (x,y) equal to

(.l,.l),(.1,.9), (.767,.133) with strengths 1.0,.5 and .6 re-

spectively; while sinks were located at (.467,.5) and (.9,.9)

with strengths 1.83 and .27. They are represented in figure 2

as (+)'s and (-)'s.

problem 5:

Problem five can be found in Kershaw's paper[15J. It is

two dimensional and is without sources or sinks. In figure 3,

D or N at a boundary signifies homogeneous Dirichlet or homo-

geneous Neumann conditions respectively. Equation (2) gives the

initial condition for this problem, and the transmissivities are:

Kx=KY=KZ=I0-4 in region A

Kx=KY=KZ=I0 - 2  in B

10



(7)

Kx=KY=KZ=10 in C, and

Kx=KY=KZ=106 in D.

3. Summary of the Numerical Methods

Equation (1) is approximated by a node-centered finite dif-

ference formulation. The truncation error is second order in the

spatial increments if a uniform mesh is used. The accuracy drops

to first order if the mesh is nonuniform. The boundary conditions

are handled in such a way that the second order truncation error

is maintained regardless of the spacing.

By employing the "natural" ordering of the grid points a

seven banded symmetric matrix equation results,

(8) Ah=b

where A is positive semi-definite, b represents known boundary

conditions and possible sources or sinks, and h is the vector of

unknown pressure head values to be solved for.

Solving for h involves iterating on an initial guess to a

final solution which in some sense must be close to the exact

answer. Defining the mth iterate as h(m), an error vector

associated with the mth iterate is introduced:

( 9) em=b-Ah (m)

The inf-norm of e(m ) scaled to e(0 ) defines the mth residual

used in the results section of this paper. The iterative proc-

ess is halted when the absolute magnitude of the scaled residual

is less than a tolerance level of 10-8.

The iterative algorithms are outlined below. For a complete
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description of any particular method the reader is referred to

the original works from which the methods have been extracted.

Mi:

The original version of Stone's[l] SIP was extended to three

dimensional problems by Weinstein et al[16]. The method splits

up the matrix A(eq. 8) into an approximate LU factorization, where

L and U are upper and lower triangular matrices. The product

of these two matrices, however, yields thirteen nonzero diagonals

rather than seven which were originally in A. Two term Taylor

series corrections (weighted by an iteration parameter) are

"lumped" into the original LU factors producing a revised fact-

orization which minimizes somewhat the effects of the concom-

mitant diagonals.

Values for the iteration parameters range between zero and

one, with values close to one being near optimal. Careful sel-

ection of this parameter is critical. Too large a value could

cause divergence while too small a value may lead to very slow

convergence. A cycle of 3 parameters was selected (see eq 10)

where amax is found by employing the formula given in Wein-

stein et al[16] (using an average value, rather than a maximum

value over the entire domain).

(10) 1-ct=(1-max)t/3, for t=l,2,3.

A refinement of SIP involves renumbering the nodes in pro-

ducing the matrix equation (8). Weinstein et al use two out of a

a possible four distinct numberings that can be made by re-
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versing the order of the nodes along one or two of the coord-

inate axes. Including a second renumbering of the A matrix and

performing two approximate inversions of A for each SIP iteration

was found to increase the total computation time required to con-

verge to a solution. In addition, if (as is done here) the L and

U matrices are stored for each renumbering of the A matrix (as

well as for each at) rather than recalculated at each SIP

iteration, the amount of storage required can become quite large.

For these reasons only the natural ordering of the nodes is used.

Conjugate Gradient Methods:

With the recent introduction of incomplete Cholesky pre-

conditioners[2] to the basic conjugate gradient algorithm[17,

18,19], there has been a renewal of interest in this algorithm

and an ongoing search for "optimal" preconditionerst6,7,8,9].

Conjugate gradient methods differ from SIP in that they

are based upon the assumption that A is a symmetric matrix.

SIP has no such restriction. Variations of preconditioned

conjugate gradient methods do exist for nonsymmetric matrices

(20,21] but the theory and application is significantly dif-

ferent than for the symmetric case.

The incomplete Cholesky conjugate gradient method of

Meijerink and van der Vorst[2], involves a similar factorization

of the A matrix as found in SIP. It is given by:

(11) AzLDLT,

where D is a diagonal matrix, and L is a lower triangular matrix

whose nonzero diagonals match positions of those in the A matrix.
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The product of LU from SIP and LDLT from ICCG are ident-

ical provided the iteration parameter used in SIP is set to zero.

The ICCG factorization neglects the six additional diagonals

which result in the product of LDLT. Alternative factoriza-

tions include extra diagonals in the L matrix in an effort to

give a more accurate Cholesky decomposition, but these are not

considered here. Such variants tend to increase the storage

requirements of the method and the amount of recursive work in

each iteration. This was observed by Kershaw[15).

Gustafsson[4] improved on ICCG by incorporating Stone's idea

of minimizing the effect of concommitant diagonals produced in

the LDLT factorization. Unlike Stone, who uses a two term Taylor

expansion of the unwanted terms of the factorization, Gustafsson

employs a one term Taylor expansion. This guarantees that a sym-

metric factorization can be found and that the conjugate grad-

ient algorithm remains applicable. Gustafsson's method is refer-

red to as MICCG.

Just as in Stone's method an iteration parameter is used

which ranges in value between zero and one. MICCG was found to

be less sensitive to the actual value of the iteration parameter

than is SIP. For each of the five problems tested, a trial and

error system was used to find optimal values (the magnitudes

ranged between .95 and 1.0).

The advent of vector processing machines has resulted in ef-

forts to modify the inherent recursion involved in inverting the

LDLT approximation to the A matrix. This was partially ac-
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complished by van der Vorst[3] who split the lower triangular

matrix L into diagonal blocks which could then be individually

inverted via truncated Neumann series.

Van der Vorst's method of vectorizing the recursive part of

the iteration loop has been employed in "vectorizing" MICCG. The

resultant algorithm is referred to in this paper as VICCG and

should not be confused with van der Vorst's vectorized ICCG. As

with MICCG an iteration parameter must be provided and in general

is found to have a magnitude less than the optimal value found

for MICCG. It is also found by trial and error.

One final variant of the MICCG algorithm involves using a

three term truncated Neumann series approximation for invert-

ing the lower triangular matrix L in the LDLT factorization.

While this variation eliminates recursion altogether in the

iteration loop, it was found that for the fastest convergence

the "optimal" iteration parameter was usually zero. The re-

sulting algorithm therefore is actually a polynomial form of the

unmodified original ICCG method. It is here referred to as PICCG.

An alternative to factoring the A matrix to obtain a pre-

conditioner, involves approximating A's inverse by a matrix

polynomial[22]. Recently, Dubois et al23] have reported success

in using a truncated Neumann series expansion in A for an approx-

imation to A's inverse. Johnson et al[24] have proposed a poly-

nomial preconditioner whose coefficients are determined in an

effort to reduce the condition number of the product of A and

its preconditioner. Minimizing this number is important since
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theoretically the rate of convergence of the conjugate gradient

algorithm increases as the magnitude of the condition number is

reduced.

Saad's[5] method is a variant of the method of Johnson et

al. It attempts to minimize

( Mmax
(12) 0J(1-s()) 2w()d

over all polynomials s(A) less than or equal to a specified

degree, and where Amax is the largest eigenvalue of the matrix

A. In the present work a polynomial of third degree is sought,

with weight factor:

(13)

Saad originally proposed finding Amax by employing Gershgorin

circles[25]. In the present work Amax is fixed at 2 which is near

the value found by employing Gershgorin's theorem to matrices

(of the type considered here) which have been diagonally scaled.

In almost every instance the choice of 2 as an upper bound over

that found via Gershgorin's theorem produced faster convergence.

This algorithm is referred to as POLCG.

If instead of a polynomial of order three one of zeroth

order is selected, and the A matrix is diagonally scaled, the

preconditioner for the conjugate gradient algorithm becomes the

identity matrix. This simple preconditioner is referred to here

as DSCG.
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4. Results

Results of the tests are presented in tables I and II of

this section. Included are: timings, iteration parameters,

iteration counts, and megaflop rate for the iteration loop of

each algorithm. In table II, results from a subset of the prob-

lems listed in table I which have been modified to increase

the number of nodes and thereby the size of matrix equation to

be solved are given.

The categories in the tables are relatively self explan-

atory. By set-up time is meant the time necessary to set up the

matrix equation and to initiate the iteration loop. The megaflop

rate was found by dividing the total number of operations per-

formed by the average CPU time needed to complete one iteration

loop. Parenthetical values alongside those of VICCG are results

of setting its iteration parameter to zero. This produces a code

which mimics van der Vorst's[3] vectorized version of ICCG.

The burden of vectorizing each of the algorithms was

carried primarily by the Cyber 205 vector compiler with scalar

optimizer. Few special Q8 calls are used. In particular they

are Q8MAX and Q8SDOT. Q8MAX is used by each of the schemes

for computing the inf-norm of the residual vector for conver-

gence checking. Q8SDOT gives the scalar dot product of two

vectors and is used solely by the conjugate gradient codes.

Special "chaining" of do loops for the purpose of increasing

the number of linked triadic operations was not done.

Diagonal scaling of the A matrix was performed only on
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POLCG and DSCG. To find the scaled residual as defined by (9)

the computed residuals are first multiplied by the diagonal

scaling factors to find "true" values of the residuals. Scaling

the remaining conjugate gradient algorithms as outlined by

Eisenstat(26] would not reduce the number of calculations in

the present instance because the same number of operations

saved in one portion of the algorithm would need to be per-

formed in finding the "true" residual as given in (9).

Two of the codes seem to perform better than all others

in table I. They are MICCG and POLCG, which have the fastest

iteration times on 2 and 3 of the test problems respectively.

SIP performed relatively poorly on all but the first two test

cases. (If the tolerance level for convergence changes from

10-8 to 10-3 SIP does dramatically better-particularly

on problem 2-but for such a stopping criterion SIP gives in-

correct results for problem 3. Given this larger tolerance level,

POLCG and SIP performed the best on two problems each.) DSCG and

PICCG did better than both ICCG and VICCG for the problems in

table I leading one to believe that vectorizing the ICCG code in

the manner of van der Vorst is not particularly efficient for

small three dimensional problems because the vector lengths are

not long enough. The situation for VICCG is worse if an iteration

parameter is not used(as it is for MICCG) to improve on the iter-

ation count. The phenomenal timings of SIP and MICCG for test

problem 1 indicate that the preconditioner(for MICCG) and the LU

factorization(for SIP) are nearly exact inverses of the original
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matrix. (The exact answer for test problem one was a constant

head value throughout the domain.)

Table I highlights some striking differences between POLCG

and MICCG. POLCG has nearly three times the megaflop rate of

MICCG while MICCG requires on average only half as many itera-

tions. On a scalar machine POLCG could not compete with MICCG

because it requires more iterations and actually performs more

operations in its inner loop than MICCG. The vectorizability of

POLCG allows it to be competitive with MICCG on a Cyber 205.

Continuing the comparison between POLCG and MICCG it is

noted that for "optimal" convergence in MICCG a suitable iter-

ation parameter must be found while for POLCG no such parameter

is needed. Ashcroft and Grimes[9] recommend an optimal iter-

ation parameter of just less than unity for MICCG based upon

empirical evidence. While these observations appear to be gen-

erally true, there are exceptions. In the first test problem

if a value of .999 is used rather than 1.0 the iteration count

increases from 2 to 16. While problem 1 is a special case, in-

stances occur where the value of an "optimal" iteration parameter

is rather sharply defined (in particular when modelling aniso-

tropic media). For such cases several runs of MICCG may be re-

quired to ensure that a given choice of iteration parameter is

not far from optimal. For the "larger" problems reported in

table II, it was found that the iteration count varied from 61

to 42 to 51 as the iteration parameter for MICCG changed from

.95 to .994 to .9996 on problem 2. Similarly on problem 4 of
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table II, altering the iteration parameter of MICCG from .95 to

.999 to .9995 produced iteration counts of 102, 63, and 66

respectively.

The neccesity of an iteration parameter for MICCG may

become a problem if the matrix equation is periodically updated

(as is done when modelling groundwater problems for which water

table conditions apply). If revision of the matrix equation is

frequently done during the solution of a time dependent problem

one would expect some variation in the value of the "optimal"

iteration parameter. To find its value at each update would be

impractical, while using the same value throughout the itera-

tions may or may not be optimal for the whole problem. The only

way to be assured of its "optimality" is to run a series of tests

on the complete time dependent problem for a variety of iter-

ation parameters. Analysis of a single time step is not suffic-

ient.

A further disadvantage in using MICCG rather than POLCG on

problems requiring frequent updates is that the set-up time for

MICCG is roughly three times that of POLCG.

An observable advantage in using MICCG over all of the other

methods has been previously reported(9] and is confirmed in the

tests reported here. Comparing iteration counts in problems 2

and 4 of table I with those in table II, it can be seen that

the increase for MICCG compared to that for all of the other

methods is much less. The rate at which the number of iterations

increases as a function of N (number of nodes along one dimen-

20



sion of the numerical grid) is O(NI) for MICCG while for

POLCG and ICCG the increase appears to be O(N). The rate for

VICCG falls somewhere in between depending upon the test problem.

VICCG improves substantially as the size of the problem

increases as can be seen by comparing table I results to those of

table II. However in cases of strong anisotropy, as is present in

test problem 4, VICCG has some definite difficulty. In fact the

presence of an iteration parameter in the algorithm is hardly

warranted.

In conclusion, it would appear that for relatively small

domains (on the order of a few thousand unknowns) POLCG is a very

good algorithm as applied to the solution of two and three dim-

ensional groundwater flow equations. For larger problems MICCG is

perhaps a better choice when circumstances are such that frequent

updates of the matrix equation are unnecessary. As the number of

unknowns continues to increase, VICCG is an attractive alterna-

tive to MICCG because of its vectorizability. However, strongly

anisotropic conditions seem to severely increase VICCG's iter-

ation count and for such problems MICCG may give superior per-

formance.
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Table I
Problem 1 (4913 nodes)

Set up Iteration Number of Iteration Megaflop
Algorithm time parameter iterations time rate

SIP .157 1.0 2 .007 20
ICCG .038 n/a 19 .107 28
POLCG .029 n/a 13 .039 92
VICCG .099(.099) .9(0.0) 19(21) .223(.252) 21
MICCG .091 1.0 2 .001 28
DSCG .026 n/a 39 .045 94
PICCG .039 n/a 21 .050 89

Problem 2 (4913 nodes)

Set up Iteration Number of Iteration Megaflop
Algorithm time parameter iterations time rate

SIP .155 .9994 31 .206 20
ICCG .038 n/a 44 .278 28
POLCG .028 n/a 55 .183 92
VICCG .097(.097) .98(0.0) 30(44) .367(.556) 21
MICCG .089 .975 29 .184 28
DSCG .026 n/a 178 .211 94
PICCG .036 n/a 88 .224 89

Problem 3 (4913 nodes)

Set up Iteration Number of Iteration Megaflop
Algorithm time parameter iterations time rate

SIP .147 .9974 524 3.585 20
ICCG .038 n/a 45 .278 28
POLCG .029 n/a 39 .128 92
VICCG .090(.090) .92(0.0) 40(48) .500(.609) 21
MICCG .082 .95 31 .182 28
DSCG .026 n/a 124 .146 94
PICCG .037 n/a 52 .131 89

Problem 4 (1922 nodes)

Set up Iteration Number of Iteration Megaflop
Algorithm time parameter iterations time rate

SIP .042 .9994 127 .315 18
ICCG .017 n/a 72 .166 26
POLCG .014 n/a 103 .128 85
VICCG .043(.043) .4(0.0) 114(116) .271(.275) 26
MICCG .043 .9953 43 .101 26
DSCG .013 n/a 336 .150 90
PICCG .017 n/a 177 .167 &3
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Table 1(continued)

Problem 5 (5202 nodes)

Set up Iteration Number of Iteration Megaflop
Algorithm time parameter iterations time rate

SIP .166 .9998 189 1.241 19
ICCG .046 n/a 58 .373 25
POLCG .038 n/a 52 .160 93
VICCG .102(.102) .9(0.0) 47(59) .224(.282) 47
MICCG .105 .95 35 .212 27
DSCG .035 n/a 162 .186 94
PICCG .046 n/a 67 .162 87

Table 2

Problem 2 (35937 nodes)

Set up Iteration Number of Iteration Megaflop
Algorithm time parameter iterations time rate

SIP 1.034 .9994 169 8.562 19
ICCG .207 n/a 84 3.995 27
POLCG .150 n/a 139 3.768 84
VICCG .570(.570) .996(0.0) 47(84) 2.792(5.082) 33
MICCG .566 .994 42 1.967 27
DSCG .136 n/a 457 4.306 87
PICCG .207 n/a 290 6.254 78

Problem 4 (7442 nodes)

Set up Iteration Number of Iteration Megaflop
Algorithm time parameter iterations time rate

SIP .251 .994 223 2.120 19
ICCG .745 n/a 145 1.298 26
POLCG .065 n/a 193 .855 93
VICCG 154(.154) .4(0.0) 221(232) 1.444(1.510) 50
MICCG .174 .9988 63 .589 26
DSCG .058 n/a 640 1.056 94
PICCG .073 n/a 328 1.132 88
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